New method allows scientists to watch brain cells interacting in real time


Your daily selection of the latest science news!

According to Medical Xpress

New method allows scientists to watch brain cells interacting in real time
An astrocyte (green) interacts with a synapse (red), producing an optical signal (yellow). Credit: UCLA/Khakh lab

An advance by UCLA neuroscientists could lead to a better understanding of astrocytes, a star-shaped brain cell believed to play a key role in neurological disorders like Lou Gehrig’s, Alzheimer’s and Huntington’s disease.

Reported in Neuron, the new method enables researchers to peer deep inside a mouse’s and watch astrocytes’ influence over nerve-cell communication in real time.

In particular, the UCLA team focused on astrocytes’ relationship with , the junctions between neurons that enable them to signal each other and convey messages.

“We’re now able to see how astrocytes and synapses make physical contact, and determine how these connections change in disorders like Alzheimer’s and Huntington’s disease,” said lead author Baljit Khakh, a professor of physiology and neurobiology at the David Geffen School of Medicine at UCLA. “What we learn could open up new strategies for treating those diseases, for example, by identifying cellular interactions that support normal brain function.”

Neuroscientists have tried for years to measure how astrocytes’ tentacles interact with synapses to perform important brain functions. Until now, however, no one could develop a test suitable for viewing adult brain tissue in living mice.

In the method created by Khakh’s team, different colors of light pass through a lens to magnify objects that are invisible to the naked eye and far smaller than those viewable by earlier techniques.

The new test allowed them to observe how interactions between synapses and astrocytes change over time, as well as during various diseases, in mouse models.

“We know that astrocytes play a major role in how the brain works and also influence disease,” said first author Chris Octeau, a postdoctoral fellow of physiology in Khakh’s lab. “But exactly how the cells accomplish these tasks has remained murky.”

It is unclear how often astrocytes make contact with synapses and how these interactions change during disease or as a result of different types of cellular activity.

The UCLA advance provides a powerful tool that scientists can use to address these questions.

“This new tool makes possible experiments that we have been wanting to perform for many years,” said Khakh, a member of the UCLA Brain Research Institute. “For example, we can now observe how brain damage alters the way that astrocytes interact with neurons and develop strategies to address these changes.”

Read more…

  • Got any news, tips or want to contact us directly? Email esistme@gmail.com

__

This article and images were originally posted on [Medical Xpress] April 4, 2018 at 12:04PM. Credit to Author and Medical Xpress | ESIST.T>G>S Recommended Articles Of The Day

 

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s