Optipulse, Inc.|High value, low cost LightSpeed Wireless at 10Gbps single channel


Your daily selection of the latest crowdfunding projects!

According to  fundable.com

High Speed Optical Wireless
What if a technology were invented that greatly increased access across the globe to high-speed internet by overcoming the limits of current technologies?

If this sounds like the far off future, then the future of communications technology is here.  Meet OptiPulse: creator of a revolutionary laser communications technology called the Light Bridge .  The Light Bridge combines the advantages of fiber-optics (high-bandwidth, security) with those of cell-towers (wireless, lower cost) into one technology.

The technologies we are using to drive the internet of today may not be our best solutions for the future.  Most people don’t realize it, but fiber-optics and radio towers each have several major drawbacks that render them unsustainable for future internet development.  Let’s examine these drawbacks, then see how these issues are addressed with OptiPulse’s Light Bridge.

The advantage of using OptiPulse’s Light Bridge becomes obvious when we consider its specs:

Multiple major corporations are lining up to fund development towards integrating our technology into their own products and services. We’ve already secured our first purchase order for $415,000, and have three important  deliveries to meet over the next six months. Then we can address the large potential back orders that are beginning to form.

In addition to enterprise sales, we’re also designing a line of products that will go directly to consumers, who would be able to connect to the internet either through a mesh network, or by finding an Internet Service Provider.

To see how it all works, and what the future of communication will look like with Optipulse, read on!

It’s safe to say that when the internet was invented, it wasn’t done so with an endless parade of cat videos and live streaming content in mind. The world’s appetite for bandwidth has far exceeded the current capabilities of the physical layer (the actual fibers, towers, etc. that connect the internet).

The next step in wireless technology is 5G, but it can’t be deployed or sold without a 10Gbps backhaul or infrastructure. Building this infrastructure with fiber is extremely expensive, and in most cases cost prohibitive.

The Internet of Things — that is, the numerous interconnected smart devices that now run our homes, cars, etc. — is based on the premise that future network infrastructure will be able to handle exponential growth in the number of connected persons and devices. When everything in your home is connected to the internet, from your coffee maker to your home security system, a lot of bandwidth is required. Current network infrastructure is simply unable to handle the massive complexity involved in our increasingly interconnected world.

They live in primarily rural or underdeveloped communities that are unlikely to see broadband buildout any time soon, as there is little economic incentive for development.

Nicolas Negroponte, founder of Wired Magazine and MIT’s Media Lab, and one of the tech industry’s most consistent prophets, predicted that “connecting the last billion” would be the defining issue of the next phase of the internet. “Connecting the last billion is very different from the next billion,” Negroponte said in a 2014 TED talk. “The next billion are low hanging fruit. The last billion are rural. These people are not poor in the same way. They may be primitive.”

Our technology’s low cost, high speed, and ease of installation make it the most obvious choice for this endeavor.

This transceiver is powered by chips that can be customized to adapt to different distances or bandwidth requirements. Once we have demonstrated Optipulse’s technology under our existing contract, we will quickly shift into proving this customization for other contractors. Mr. Joseph’s has a track record of proven technology.  His new device is based on patent pending technology that is different from previously patented technology. It uses light beams cheaply and with high power.  We have filed patents for this effective and efficient technology. The new technology is comparable with typical fiber-optic connections. Higher bandwidths may be possible through multiplexing.

BUT, unlike fiber connections, we deliver these speeds completely wirelessly, an advantage that cannot be understated. The most expensive part of fiber-optic networks is the installation, which usually requires digging up earth and laying cables. “Connecting the last billion” is such a difficult task because, as Negroponte pointed out, these people are beyond poor. How can a village with no concept of money, and no desire to obtain it, ever afford a billion dollar project to lay fiber cables?

Additionally, free-space optical lasers do not rely on overburdened parts of the radio-frequency spectra. Wireless towers and fiber optic networks will always run into sustainability issues due to their physical limitations.

Laser internet pushes the limits the same way moving our files from physical filing cabinets to the cloud is doing now. Our approach is sustainable in an industry where sustainability has long been the largest hurdle to overcome.

Optipulse has secured our first contract for just under $0.5M with the possibility for a much larger buildout after proven success of our first delivery. We will be delivering prototype modules equipped for long distance 10Gbps optical wireless links in September 2016 to a large customer. Our 2nd and 3rd deliveries will test the boundaries of distance even more.  We operate all of our engagements with strict confidentiality.

A separate contract for development of a short distance module with another strategic company for connectors. The first module deliveries were sent and received with good results. A proposal for a larger development add on is in the works using our new structure the Light Grid.

UNM is considering our technology as an option for future connectivity needs. The same type of devices will be proposed to the City of Albuquerque in their buildout of Ignite America plan to increase bandwidth to customers throughout the city.

We are discussing short distance >10Gbps docking station modules and data center applications. These have been delivered and are in connector design phase.

The University of New Mexico is considering a link which connects their campuses with high speed internet using our prototypes, as well as a joint project that would connect rural underserved areas in New Mexico with high bandwidth. The Science and Technology Center has approved an investment of $100,000 to start developing rural networks. This investment is saving the school millions of dollars in their projected buildout expenses by not having to lay fiber. Their goal is to make New Mexico the first state with a full 5G infrastructure.

All together, we have 8 entities already waiting for proposals. Some are universities.

Our product roadmap is roughly as follows:

The future of Optipulse technology also has a lot to do with machine-to-machine communication.

With large companies testing drones for deliveries, and working on self-driving cars, it is a virtual certainty that machine-to-machine communication will continue to grow and characterize future generations of technology. Our products are poised to be the most affordable and reliable means for M2M communication, so a diverse future line of products, built around future technologies, is almost certain.

Make sure to request access to the business plan tab of this profile for an inside look into Optipulse!

Read more…

  • Got any news, tips or want to contact us directly? Feel free to email us: esistme@gmail.com. To see more posts like this please subscribe to our newsletter by entering your email. By subscribing you’ll receive the top trending news delivered to your inbox.

__

This article and images were originally posted on [ fundable.com] May 23, 2018 at 09:01AM. Credit to Author and fundable.com | ESIST.T>G>S Recommended Articles Of The Day

 

 

 

Advertisements