Scientists develop material that could regenerate dental enamel


Your daily selection of the latest science news!

According to Phys.org – latest science and technology news stories

Cover Image: Close-up of the enamel-like material. Credit: Alvaro Mata

Researchers at Queen Mary University of London have developed a new way to grow mineralised materials which could regenerate hard tissues such as dental enamel and bone.

Enamel, located on the outer part of our teeth, is the hardest in the body and enables our teeth to function for a large part of our lifetime despite biting forces, exposure to acidic foods and drinks and extreme temperatures. This remarkable performance results from its highly organised structure.

However, unlike other tissues of the body, cannot regenerate once it is lost, which can lead to pain and tooth loss. These problems affect more than 50 per cent of the world’s population and so finding ways to recreate enamel has long been a major need in dentistry.

The study, published in Nature Communications, shows that this new approach can create materials with remarkable precision and order that look and behave like .

The materials could be used for a wide variety of dental complications such as the prevention and treatment of tooth decay or tooth sensitivity—also known as dentin hypersensitivity.

Dr. Sherif Elsharkawy, a dentist and first author of the study from Queen Mary’s School of Engineering and Materials Science, said: “This is exciting because the simplicity and versatility of the mineralisation platform opens up opportunities to treat and regenerate dental tissues. For example, we could develop acid resistant bandages that can infiltrate, mineralise, and shield exposed dentinal tubules of human teeth for the treatment of dentin hypersensitivity.”

Scientists develop material that could regenerate dental enamel

Close-up of the enamel-like material. Credit: Alvaro Mata

The mechanism that has been developed is based on a specific protein material that is able to trigger and guide the growth of apatite nanocrystals at multiple scales—similarly to how these crystals grow when dental enamel develops in our body. This structural organisation is critical for the outstanding physical properties exhibited by natural dental enamel.

Lead author Professor Alvaro Mata, from Queen Mary’s School of Engineering and Materials Science, said: “A major goal in is to learn from nature to develop useful materials based on the precise control of molecular building-blocks. The key discovery has been the possibility to exploit disordered proteins to control and guide the process of mineralisation at multiple scales. Through this, we have developed a technique to easily grow synthetic materials that emulate such hierarchically organised architecture over large areas and with the capacity to tune their properties.”

https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2018/32-scientistsde.jpg

Similarity of structure between the enamel-like material and dental enamel. Credit: Alvaro Mata

Enabling control of the mineralisation process opens the possibility to create with properties that mimic different hard tissues beyond enamel such as bone and dentin. As such, the work has the potential to be used in a variety of applications in regenerative medicine. In addition, the study also provides insights into the role of protein disorder in human physiology and pathology.

Continue reading…

  • Got any news, tips or want to contact us directly? Feel free to email us: esistme@gmail.com. To see more posts like this please subscribe to our newsletter by entering your email. By subscribing you’ll receive the top trending news delivered to your inbox.
    __

This article and images were originally posted on [Phys.org – latest science and technology news stories] June 1, 2018 at 05:03AM. Credit to Author and Phys.org – latest science and technology news stories | ESIST.T>G>S Recommended Articles Of The Day

 

 

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.